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Fractional populations of blood groups
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We rederive the Castle-Hardy-Weinberg law on the fractional populations of blood groups using a renor-
malization group approach. The result shows that the ratios between the four fractional populations of blood
groupsA, B, AB, andO are fixed and do not change from generation to generation. We also consider a simple
case of mutation, where the blood groupA is divided intoA1 andA2, and there exists a mutual transformation
between the two. It is shown that detailed information about the fractional ratio between the populations can be
obtained using the existing data.@S1063-651X~97!02907-3#
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I. INTRODUCTION

Many concepts in the physical sciences can be applie
problems in the biological sciences. One of the remarka
examples would be the isomorphism between cluster di
butions in physics and genetic diversity in biology@1#. In this
paper, another well-known concept in physics is used in
der to understand a problem in biology, namely, the fr
tional populations of blood types. This concept in physics
introduced in the theory of renormalization, especially t
renormalization group equations and fixed points. Using
concept, we will consider the problems of the ratios betwe
fractional populations of blood groups.

In genetics, there are rules by which hereditary blood ty
is determined. The key fact is that there are three fac
A, B, andO, among which each human has two factors.
child receives two factors, one from the mother and the ot
from the father. FactorsA andB are dominant overO, in
other words, populations of blood typeA are composed o
those ofAA andAO, and similarly for blood typeB. For
instance, if the blood type of the parents areAB andO, the
blood types of their children should beA andB. With these
genetic rules for blood types, we raise the following qu
tion. Will the fractional population for each blood grou
change from generation to generation? One of the purp
of this paper is to answer this question. To this end, we h
to find equations which govern the fractional populations
blood groups for each generation. The derivation of
equations is presented in the next section. The equat
show that all fractional populations of blood groups are fix
among successive generations. This result is already kn
as the Castle-Hardy-Weinberg law@2#, which states that
there is a particular equilibrium condition under random m
ing.

More detailed investigations on blood types show t
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several subgroups ofA exist and the most important areA1
and A2 @3,4#. Accordingly subgroupsA1, A2, A1B, and
A2B are recognized. The subgroupA1 represents the major
ity, and another subgroupA2 the minority. The populations
of the minority are generally so small that there are not ma
data related toA1 andA2 populations. However, it is remark
able that, for the white population only, the minority bloo
type A2 is quite common. The reported data are given
A1 :A2580:20, andA1B:A2B560:40 @4,5#. Therefore, for
the white population, it is reasonable to argue that there
four blood factorsA1, A2, B, andO, and that the race is
composed of the six blood groupsA1, A2, A1B, A2B, B, and
O, instead of the conventional four blood groups.

The second topic of this paper is to consider the c
where a simple mutation is involved. Here, we assume th
mutual transformation betweenA1 andA2 is allowed with a
small probability. The equations governing populations w
be modified accordingly. Using the renormalization equ
tions and the existing population data, we can determine
ratio between the mutation probabilities. Furthermore,
show thatA1 is superior toA2; in other words,A1A2 belongs
to the blood groupA1. The final theoretical result of this
paper is that the blood groupA of the white race is divided as
A1A1 :A1A2 :A2A2 :A1O:A2O59:12:4:3:2.

II. BLOOD GROUP EQUATIONS

The purpose of this section is to find the equations wh
govern the fractional populations of the blood groups in s
cessive generations. These ‘‘blood group equations’’ co
spond to the ‘‘renormalization group equations’’ in physic
Here, the generation in this case corresponds to the scalin
renormalization group equations. LetAA(n), AO(n),
BB(n), BO(n), AB(n), and OO(n) denote the ratios of
fractional populations for thenth generation. The sum of th
six fractions should be 1.

Consider the factorsA(n), B(n), andO(n) for the nth
generation, which represent the fractional populations giv
865 © 1997 The American Physical Society
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the corresponding genetic factors,

A~n!5AA~n!1
1

2
AO~n!1

1

2
AB~n!,

B~n!5BB~n!1
1

2
BO~n!1

1

2
AB~n!, ~1!

O~n!5OO~n!1
1

2
AO~n!1

1

2
BO~n!.

The coefficient12 is used under the condition that there is
preference for any blood factor during the meiosis. It is e
to noteA(n)1B(n)1O(n)51.

Assuming that the blood types are not correlated with s
in other words, that the population ratios for female are
same as those for male, each population ratio for
(n11)th generation is determined by the blood group eq
tions written as
six
ge

w
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io
ion
e
g
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x,
e
e
-

AA~n11!5A~n!3A~n!,

AO~n11!52A~n!3O~n!,

BB~n11!5B~n!3B~n!,
~2!

BO~n11!52B~n!3O~n!,

AB~n11!52A~n!3B~n!,

OO~n11!5O~n!3O~n!.

Here, the coefficient 2 represents that a blood typeAB child
can receive the blood factorA or B from the mother or from
the father. These equations have the same mathema
structure as the renormalization group equations, which
used widely in the theory of critical phenomena.

Using these equations, we find that
AA~n11!1AO~n11!1BB~n11!1BO~n11!1AB~n11!1OO~n11!

5$A~n!1B~n!1O~n!%$A~n!1B~n!1O~n!%51, ~3!
od
the

fore
he
e-

,

ted

een
e

to
which is consistent with the fact that the sum of the
population ratios should be preserved along succeeding
erations.

Furthermore, we notice that

A~n11!5AA~n11!1
1

2
AO~n11!1

1

2
AB~n11!

5A~n!3$A~n!1B~n!1O~n!%5A~n!. ~4!

This shows thatA(n) is conserved. Similarly we can sho
thatB(n) andO(n) are also conserved. This fact states th
there is no change in genotypic proportions in a populat
from generation to generation. When there is no mutat
this conservation of blood types is hardly surprising. W
intuitively expect that fractional population does not chan
under random mating conditions and this fact was named
Castle-Hardy-Weinberg law@2#.

This result can be applied in understanding relationsh
between consanguinities. Suppose that one consangu
shows a quite different fractional population ratio from t
other; this means that the origins of the two are differ
from each other. For instance, the American Indians hav
predominant population of blood typeO, about 70–100 %
@6#. Therefore, we may be able to trace the origin of t
American Indians by identifying another consanguinity w
a dominantO blood type.
n-

t
n
,

e
e

s
ity

t
a

III. MUTATION

In order to understand the effect of mutation on the blo
populations, it is necessary to allow mutations between
blood groups. However, mutations betweenA, B, andO are
so rare that there are no decent data on this matter. There
we will here consider only a special case of mutation. T
generalization of the following discussion for mutations b
tweenA, B, andO would be straightforward.

The blood groupA is known to be divided into two types
A1 andA2. Especially, for the white race, theA2 fraction is
substantial, while it is quite rare for other races. It is repor
that, for the white race, the ratios of the blood groupsA1,
A2, A1B, A2B are found to beA1B:A2B560:40 and
A1 :A2580:20 @4,5#.

Here we consider a situation where the mutation betw
A1 andA2 is allowed. We let the probability of changing th
blood factorA1 to A2 be x, and denote byy the probability
of changing the blood factorA2 to A1

A1⇒
x

A2, A1⇐
y

A2 . ~5!

Then the new fractional populations which deliver factors
their children are modified as
@A1A1~n!#new5~12x!2A1A1~n!1~12x!yA1A2~n!1y2A2A2~n!,
~6!

@A1A2~n!#new52x~12x!A1A1~n!1$~12x!~12y!1xy%A1A2~n!12y~12y!A2A2~n!,
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@A2A2~n!#new5x2A1A1~n!1x~12y!A1A2~n!1~12y!2A2A2~n!,

@A1O~n!#new5~12x!A1O~n!1yA2O~n!,

@A2O~n!#new5xA1O~n!1~12y!A2O~n!,

@A1B~n!#new5~12x!A1B~n!1yA2B~n!,

@A2B~n!#new5xA1B~n!1~12y!A2B~n!,

@BB~n!#new5BB~n!,

@BO~n!#new5BO~n!,

@OO~n!#new5OO~n!.

The factors introduced for the blood group equations should also be modified with the new fractional populations. In
write

Ã1~n!5@A1A1~n!#new1
1

2
@A1A2~n!#new1

1

2
@A1O~n!#new1

1

2
@A1B~n!#new,

Ã2~n!5@A2A2~n!#new1
1

2
@A1A2~n!#new1

1

2
@A2O~n!#new1

1

2
@A2B~n!#new,

~7!

B̃~n!5@BB~n!#new1
1

2
@BO~n!#new1

1

2
@A1B~n!#new1

1

2
@A2B~n!#new,

Õ~n!5@OO~n!#new1
1

2
@A1O~n!#new1

1

2
@A2O~n!#new1

1

2
@BO~n!#new.

The blood group equations are now written in the same fashion as in the preceding section,

A1A1~n11!5Ã1~n!3Ã1~n!,

A1A2~n11!52Ã1~n!3Ã2~n!,

A2A2~n11!5Ã2~n!3Ã2~n!,

A1O~n11!52Ã1~n!3Õ~n!,

A2O~n11!52Ã2~n!3Õ~n!,
~8!

BB~n11!5B̃~n!3B̃~n!,

BO~n11!52B̃~n!3Õ~n!,

A1B~n11!52Ã1~n!3B̃~n!,

A2B~n11!52Ã2~n!3B̃~n!,

OO~n11!5Õ~n!3Õ~n!.

Using these equations, we first notice thatÃ1(n)1Ã2(n)1B̃(n)1Õ(n)51 for any generationn. Furthermore, we find tha
for the factorÕ(n),

Õ~n11!5OO~n11!1
1

2
A1O~n11!1

1

2
A2O~n11!1

1

2
BO~n11!5Õ~n!3Õ~n!1Ã1~n!3Õ~n!1Ã2~n!3Õ~n!1B̃~n!

3Õ~n!5Õ~n!3$Õ~n!1Ã1~n!1Ã2~n!1B̃~n!%5Õ~n!. ~9!
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Õ(n) is conserved as expected. Similarly we can show thatB̃(n) is also conserved. However, the factorsÃ1(n) andÃ2(n) are
not conserved separately, butÃ1(n)1Ã2(n) is conserved,

Ã1~n11!1Ã2~n11!5A1A1~n11!1A1A2~n11!1A2A2~n11!1
1

2
A1B~n11!1

1

2
A2B~n11!1

1

2
A1O~n11!

1
1

2
A2O~n11!5$Ã1~n!1Ã2~n!%3$Õ~n!1Ã1~n!1Ã2~n!1B̃~n!%5Ã1~n!1Ã2~n!. ~10!
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Using Eqs. ~6!–~8! and Õ(n)1B̃(n)512Ã1(n)
2Ã2(n), Ã1(n11) and Ã2(n11) are written in terms of
Ã1(n) and Ã2(n) as

Ã1~n11!5~12x!Ã1~n!1yÃ2~n!,
~11!

Ã2~n11!5xÃ1~n!1~12y!Ã2~n!.

Here, we assume that the current fractional population dis
bution has reached an equilibrium, which corresponds t
fixed point. At a fixed point, (Ã1* ,Ã2* ), the above equation
become

052xÃ1*1yÃ2* . ~12!

Thus we find thatÃ1* :Ã2*5y:x. Using the information on
A1B:A2B, we can determine the ratio ofx to y.

A1B

A2B
5
Ã1*3B̃*

Ã2*3B̃*
5
Ã1*

Ã2*
5
y

x
. ~13!

For the specific case ofA1B:A2B560:40, we conclude tha
x:y52:3.

Using the information onA1 :A2, we can answer the ques
tion of whether the blood typeA2 belongs toA1 or A2 and
also obtain detailed information on the populations of blo
groupA.

For these purposes, suppose thatA1A2 belongs toA1; then
we find

A1

A2
5
A1A11A1A21A1O

A2A21A2O

5
Ã1*3Ã1*12Ã1*3Ã2*12Ã1*3Õ*

Ã2*3Ã2*12Ã2*3Õ*
. ~14!

UsingxÃ1*5yÃ2* , we obtain the ratio ofÕ* to Ã2* in terms
of the ratio ofA1 to A2:

Õ*

Ã2*
5

~y212xy!/x22A1 /A2

2~A1 /A22y/x!
. ~15!

SinceÕ* and Ã2* must be positive, we have the followin
condition for a meaningful result:

y

x
,
A1

A2
,
y212xy

x2
. ~16!
i-
a

d

Now, consider the other case whereA1A2 belongs to
A2; we find

A1

A2
5

A1A11A1O

A2A21A1A21A2O

5
Ã1*3Ã1*12Ã1*3Õ*

Ã2*3Ã2*12Ã1*3Ã2*12Ã2*3Õ*
. ~17!

In this case, the ratio ofÕ* to Ã2* becomes

Õ*

Ã2*
5
y2/x22~2y/x11!A1 /A2

2~A1 /A22y/x!
. ~18!

We have a condition similar to the above case using
positiveness ofÕ* and Ã2* :

y2

x212xy
,
A1

A2
,
y

x
. ~19!

Using the existing datay/x5 3
2, Eq. ~16! and Eq.~19! are

written as

3

2
,
A1

A2
,
21

4
for A1A2PA1 ,

~20!

9

16
,
A1

A2
,
3

2
for A1A2PA2 .

By using the information ofA1 :A2580:20, we conclude tha
A1A2 belongs toA1. Furthermore, from Eq.~15!, we find the
ratio of Õ* to Ã2* ,

Õ*

Ã2*
5
1

4
. ~21!

Using Õ* :Ã2* , Ã1* :Ã2* and Eq. ~8!, we find that
A1A1 :A1A2 :A2A2 :A1O:A2O59:12:4:3:2.

IV. CONCLUSION

The motivation of this paper is to find how the fraction
populations for four blood groupsA, B, AB, O are changing
from generation to generation. We present the govern
equations, which are similar to the discretized renormali
tion group equations. The equations show that the fractio
population for each blood group does not change.
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We also consider the case where blood groupA is divided
into two groupsA1 and A2 and mutual mutations are a
lowed. Using the governing equations and the existing
tistical data, we find the following three results. Firs
x:y52:3, wherex and y are the genotypic mutation prob
ability from A1 to A2 and vice versa, respectively. Secon
the blood group ofA1A2 belongs toA1. Third, the detailed
population fractions of blood typeA are given by
A1A1 :A1A2 :A2A2 :A1O:A2O59:12:4:3:2. Webelieve that
a-

,

the above theoretical model calculation can be improved
refined with more detailed experimental data.
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